
If I knew then what I know now….

Building the new database for 
your migrated data

Susan Jane Williams,
Data Specialist, Scholars 
Resource; Independent 
Consultant and Developer

Building the target for your 
data

In 2007, Many VR professionals will 
still be using off-the-shelf products to 
facilitate data entry to meet local 
needs

Lack of access to larger institutional 
computing resources

Specialized needs, including using 
specific standards (VRA Core, CCO)



The cataloging utility as a 
bridge

Need to create local specialized data, 
but also the need to hook that to 
teaching tools

The local institutional choice of DAM or 
DAP might not support the standard 
that you wish to use and may require 
exporting data from a cataloging utility 
to that system at this time

A “cataloging utility”

That is, not only the table structure that 
holds the data….

And not just the data structure that can 
be used in other applications….

But, an understanding of the user 
interface that facilitates and guides 
data entry



So, you have done the first 
steps….

Planning documents involving partners 
across your institution

Data dictionaries

Crosswalks of local collections



The “art” of database design

Cataloging is the single most 
expensive component of creating the 
digital asset

A balance must sometimes be struck 
between choices one might make in 
guiding efficient and accurate data 
entry and the degree of standards 
adherence



What you bring to database 
design

The understanding of your own 
workflow, local needs, patron 
concerns, level of expertise of your 
cataloging staff (professionals or 
students) will be key to building the 
right user interface for your cataloging 
utility—this is the next step beyond 
data dictionaries and other planning 
documents.

Flat versus Relational 
Databases

“Flatfile” data is what we are used to 
seeing in spreadsheets

Multiple values are either expressed in 
separate columns: “Subject 1”, “Subject 
2” or are run together in the same column 
with punctuation or other dividers: 
“Subject 1; Subject 2; Subject 3”



Excel sample

Relational Databases

Relate information stored in multiple tables
Ideally, there is no redundancy of data 
entry—each value that might be reused in 
data entry is only entered once and stored 
in one table that is related for use 
everywhere else in the database (made 
available anywhere needed in the data entry 
workflow)
Numeric keys are normally used in this 
process



Sample of a table of related 
data

GUI interfaces to data tables

Obviously, looking at rows and 
columns of related numeric keys is not 
user friendly, so most commercial 
databases allow you to build graphic 
user interfaces (GUI)—forms—for data 
entry



Work and Image entry layouts

A clipped sample of 2 forms:

Splitting the interface design from 
the database (table) design

A more sophisticated approach that 
may be more flexible
Possible in either Filemaker 7+ or MS 
Access
Possible with other tools such as 
Servoy (provides the functional 
interface to SQL or Oracle tables) 
(Sample screenshot, next slide)



ER (Entity Relationship) 
Diagrams

Relational databases such as 
Filemaker Pro (FMP) or MS Access 
also use graphic tools to show specific 
fields in tables and tables related to 
each other in the entire database





Portals and subforms

Using forms/layouts, you can create 
“windows” looking into tables of related 
data (tables with relationships 
established between them) and 
showing multiple data values—more 
than one “answer” per record (multiple 
locations, agents, titles, etc. for each 
work). In FMP these are known as 
portals, in Access, subforms.

VireoCat Locations Portal (on 
Works form)



Actual City table (in form view)

Understanding the new role of 
XML in data mobility

XML facilitates pushing data between 
all sorts of applications

CCO and VRA Core 4 were both 
formed with an eye to XML



What is XML?

Extensible Markup Language (XML) is 
a universal language for sharing data 
between applications. XML is most 
appropriate for situations where the 
volume of data is generally small, as 
the data is transmitted as text, and 
controlling the structure of the data is 
important. 

How does XML work?

It “tags” data—identifies what that data 
is (what meaning it holds).

MARC tags by using numeric 
designators:

for instance a “245” field is always a 
title, a “700” or “7xx” field is a personal 
name (creator)



MARC example

XML tags

XML tags with natural language—easy 
to see what the information (the data 
value) is within the “chicken lips”

><



XML example

<!-- AGENT --> 
<set>
<display>Jasper Francis Cropsey (American painter, 1823-1900)</display> 
<index>
<agent>
<name type="personal" vocab="ULAN" refid="500012491">Cropsey, Jasper 

Francis</name> 
<dates type="life">
<earliestDate>1823</earliestDate> 
<latestDate>1900</latestDate> 
</dates>
<culture>American</culture> 
<role vocab="AAT" refid="300025136">painter</role> 
</agent>
</index>
</set>

Schema: Where the data 
standard and XML meet

Once a data standard like VRA Core 4.0 
is devised, with all the elements and 
qualifiers laid out, the standard can 
then be expressed in one XML 
document called the schema—a road 
map to then apply to a specific XSLT 
style sheet that tells a database how to 
export data into XML



VRA Core 4.0 XML schema (a 
small sample)

<!-- Agent --> 
<xsd:complexType name="agentType">
<xsd:annotation><xsd:documentation>VRA Agent element. 

Subelements are used for different types of data (names, roles, 
dates, etc.). At least one subelement must be 
provided.</xsd:documentation> 

</xsd:annotation>
<xsd:sequence minOccurs="1" maxOccurs="unbounded">
<xsd:element name="attribution" type="basicString" minOccurs="0" /> 
<xsd:element name="culture" type="basicString" minOccurs="0" /> 
<xsd:element name="dates" type="agentDateType" minOccurs="0" /> 
<xsd:element name="name" type="agentNameType" minOccurs="0" /> 
<xsd:element name="role" type="basicString" minOccurs="0" /> 
</xsd:sequence>
<xsd:attributeGroup ref="vraAttributes" /> 

What is XSLT?

You can export XML data from 
FileMaker or Access (and many other 
programs) to an assortment of 
applications simply by applying the 
appropriate Extensible Stylesheet
Language Transformation (XSLT) style 
sheet. 



XLST Sample—how the XML is 
actually exported from a database

<!-- Agent --> 
<set>
<display>
<xsl:value-of select="fm:AgentDisplay" /> 
</display>
<index>
<xsl:for-each select="fm:AgentSortName/fm:DATA">
<xsl:variable name="i">
<xsl:value-of select="position()" /> </xsl:variable>
<agent>

4 Screenshots of an XML 
export (VireoCat) 

First slide—work and image screens, 
perform find
Second slide showing the work record and 4 
related image records and export selected 
from menu bar
Third slide, resultant XML document 
(excerpt)
Fourth slide, showing the database folder 
containing database, 2 stylesheets and XML 
document







My better late than never 
epiphany….

Appreciating the symmetry of the 
elements in the work, image and 
collection records (work title, image 
title and so forth)

Appreciating the distinction between 
indexed and display values, and how 
that can give you flexibility in data 
entry

Creating Display values

Can be created from the indexed 
values “on the fly” in the xml via the 
stylesheet, or
Can be “pre-created” within the 
database by scripting/programing
Both approaches are likely to be used 
in different fields–gives flexibility in 
design choices



Location in VireoCat:
multiple table design requires “extent” in XML; 
Display created on the fly in the XML

Locations in IRIS
Showing CCO display form “pre-created” in the database from 

parsed values



Using scripting and design to 
guide cataloging

First slide shows set-up in VireoCat—as 
cataloger chooses continent, then next level 
(nation) is constrained to only the choices in 
that continent, and so forth down to 
building/site level

Second slide shows multi-table design 
necessary to do this, with 2 sets of 
additional linking tables to constrain and 
display parent/child lists

Constraining/ guiding entry



Hobbesian choices?

The multi-table design guides entry and may 
be a good solution, especially for student 
workers, but….

It complicated the design of XML export and 
import

Good to look at all these issues holistically, 
which means acquainting yourself with XML 
and scripting and design, at least 
conceptually



And what is my next 
stylesheet?

Taking relational XML export and 
running it through a stylesheet so that 
it becomes flattened CSV to use in 
DAPs such as CONTENTdm that are 
not yet XML ready! 

;-)


